If it's not what You are looking for type in the equation solver your own equation and let us solve it.
13x^2=676
We move all terms to the left:
13x^2-(676)=0
a = 13; b = 0; c = -676;
Δ = b2-4ac
Δ = 02-4·13·(-676)
Δ = 35152
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{35152}=\sqrt{2704*13}=\sqrt{2704}*\sqrt{13}=52\sqrt{13}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-52\sqrt{13}}{2*13}=\frac{0-52\sqrt{13}}{26} =-\frac{52\sqrt{13}}{26} =-2\sqrt{13} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+52\sqrt{13}}{2*13}=\frac{0+52\sqrt{13}}{26} =\frac{52\sqrt{13}}{26} =2\sqrt{13} $
| .6x=1.5x–9 | | 24-7(3x+2)=x+76 | | f+5.6=11.03 | | -5-3|10+n|=-65 | | 18x+30=12x=6 | | 4n+2=-8 | | 8xx3x-4=29 | | (3/4)x-12=0,x= | | 20+2x=5+3.5x | | 41=8p+57 | | 2(n+4)+6n=40 | | (3/4)x-12=0 | | -23+x=16 | | F(=2x+7 | | 17k-3=99 | | 5(x+2)-12=13,x= | | 12.50m=7.50 | | 6k–k=27–4k | | 8(2c-3)=4(4c-8) | | 4n-5=n+7 | | 19=w/3+16 | | 140+140+140+140+x+x=180 | | 143=11b | | 7x-4+5x+12=180 | | -4p-7=-3 | | w/3+8=-14,w= | | 8w+10=2(3w+5) | | 4(w+2)=3(3w+6) | | 5(g-9)=10 | | -4+3=7x | | 9x+18=2x+19 | | 77+146+x=180 |